In-class Exercise 1

Overview

This is the first class

Getting Started

The code chunk below will install and load tidyverse and sd packages.

pacman::p_load(sf, tidyverse, spdep)

Importing Geospatial Data

Importing polygon feature data in shapefile format

This code chunk will import ESRI shapefile in R.

mpsz <- st_read(dsn = "data/geospatial", 
                  layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\HzzZZ11\ISSS624\In-class_EX\In-class Ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Importing and transforming into projected coordinates system

preschool = st_read("data/geospatial/pre-schools-location-kml.kml") %>%
  st_transform(crs = 3414)
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `C:\HzzZZ11\ISSS624\In-class_EX\In-class Ex1\data\geospatial\pre-schools-location-kml.kml' 
  using driver `KML'
Simple feature collection with 1359 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84
hunan_sf <- st_read(dsn = "data/geospatial", 
                  layer = "Hunan")
Reading layer `Hunan' from data source 
  `C:\HzzZZ11\ISSS624\In-class_EX\In-class Ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS:  WGS 84

Importing attribute data in csv

hunan <- read_csv("data/aspatial/Hunan_2012.csv")
Rows: 88 Columns: 29
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): County, City
dbl (27): avg_wage, deposite, FAI, Gov_Rev, Gov_Exp, GDP, GDPPC, GIO, Loan, ...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Getting Started

Before we get started, we need to ensure that spdep, sf, tmap and tidyverse packages of R are currently installed in your R.

packages = c('sf', 'spdep', 'tmap', 'tidyverse')
for (p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p,character.only = T)
}
Loading required package: tmap

Import shapefile into r environment

hunan <- st_read(dsn = "data/geospatial", 
                 layer = "Hunan")
Reading layer `Hunan' from data source 
  `C:\HzzZZ11\ISSS624\In-class_EX\In-class Ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS:  WGS 84

Import csv file into r environment

hunan2012 <- read_csv("data/aspatial/Hunan_2012.csv")
Rows: 88 Columns: 29
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): County, City
dbl (27): avg_wage, deposite, FAI, Gov_Rev, Gov_Exp, GDP, GDPPC, GIO, Loan, ...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Performing relational join

The code chunk below will be used to update the attribute table of hunan’s SpatialPolygonsDataFrame with the attribute fields of hunan2012 dataframe. This is performed by using left_join() of dplyr package.

hunan <- left_join(hunan,hunan2012)
Joining, by = "County"

Visualising Regional Development Indicator

Now, we are going to prepare a basemap and a choropleth map showing the distribution of GDPPC 2012 by using qtm() of tmap package.

basemap <- tm_shape(hunan) +
  tm_polygons() +
  tm_text("NAME_3", size=0.5)

gdppc <- qtm(hunan, "GDPPC")
tmap_arrange(basemap, gdppc, asp=1, ncol=2)

Computing Contiguity Spatial Weights

In this section, you will learn how to use poly2nb() of spdep package to compute contiguity weight matrices for the study area. This function builds a neighbours list based on regions with contiguous boundaries. If you look at the documentation you will see that you can pass a “queen” argument that takes TRUE or FALSE as options. If you do not specify this argument the default is set to TRUE, that is, if you don’t specify queen = FALSE this function will return a list of first order neighbours using the Queen criteria.

Computing (QUEEN) contiguity based neighbours

wm_q <- poly2nb(hunan, queen=TRUE)
summary(wm_q)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 
Link number distribution:

 1  2  3  4  5  6  7  8  9 11 
 2  2 12 16 24 14 11  4  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links

The summary report above shows that there are 88 area units in Hunan. The most connected area unit has 11 neighbours. There are two area units with only one heighbours.

For each polygon in our polygon object, wm_q lists all neighboring polygons. For example, to see the neighbors for the first polygon in the object, type:

wm_q[[1]]
[1]  2  3  4 57 85

Polygon 1 has 5 neighbors. The numbers represent the polygon IDs as stored in hunan SpatialPolygonsDataFrame class.

We can retrive the county name of Polygon ID=1 by using the code chunk below:

hunan$County[1]
[1] "Anxiang"

The output reveals that Polygon ID=1 is Anxiang county.

To reveal the county names of the five neighboring polygons, the code chunk will be used:

hunan$NAME_3[c(2,3,4,57,85)]
[1] "Hanshou" "Jinshi"  "Li"      "Nan"     "Taoyuan"

We can retrieve the GDPPC of these five countries by using the code chunk below.

nb1 <- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1
[1] 20981 34592 24473 21311 22879

The printed output above shows that the GDPPC of the five nearest neighbours based on Queen’s method are 20981, 34592, 24473, 21311 and 22879 respectively.

You can display the complete weight matrix by using str().

str(wm_q)
List of 88
 $ : int [1:5] 2 3 4 57 85
 $ : int [1:5] 1 57 58 78 85
 $ : int [1:4] 1 4 5 85
 $ : int [1:4] 1 3 5 6
 $ : int [1:4] 3 4 6 85
 $ : int [1:5] 4 5 69 75 85
 $ : int [1:4] 67 71 74 84
 $ : int [1:7] 9 46 47 56 78 80 86
 $ : int [1:6] 8 66 68 78 84 86
 $ : int [1:8] 16 17 19 20 22 70 72 73
 $ : int [1:3] 14 17 72
 $ : int [1:5] 13 60 61 63 83
 $ : int [1:4] 12 15 60 83
 $ : int [1:3] 11 15 17
 $ : int [1:4] 13 14 17 83
 $ : int [1:5] 10 17 22 72 83
 $ : int [1:7] 10 11 14 15 16 72 83
 $ : int [1:5] 20 22 23 77 83
 $ : int [1:6] 10 20 21 73 74 86
 $ : int [1:7] 10 18 19 21 22 23 82
 $ : int [1:5] 19 20 35 82 86
 $ : int [1:5] 10 16 18 20 83
 $ : int [1:7] 18 20 38 41 77 79 82
 $ : int [1:5] 25 28 31 32 54
 $ : int [1:5] 24 28 31 33 81
 $ : int [1:4] 27 33 42 81
 $ : int [1:3] 26 29 42
 $ : int [1:5] 24 25 33 49 54
 $ : int [1:3] 27 37 42
 $ : int 33
 $ : int [1:8] 24 25 32 36 39 40 56 81
 $ : int [1:8] 24 31 50 54 55 56 75 85
 $ : int [1:5] 25 26 28 30 81
 $ : int [1:3] 36 45 80
 $ : int [1:6] 21 41 47 80 82 86
 $ : int [1:6] 31 34 40 45 56 80
 $ : int [1:4] 29 42 43 44
 $ : int [1:4] 23 44 77 79
 $ : int [1:5] 31 40 42 43 81
 $ : int [1:6] 31 36 39 43 45 79
 $ : int [1:6] 23 35 45 79 80 82
 $ : int [1:7] 26 27 29 37 39 43 81
 $ : int [1:6] 37 39 40 42 44 79
 $ : int [1:4] 37 38 43 79
 $ : int [1:6] 34 36 40 41 79 80
 $ : int [1:3] 8 47 86
 $ : int [1:5] 8 35 46 80 86
 $ : int [1:5] 50 51 52 53 55
 $ : int [1:4] 28 51 52 54
 $ : int [1:5] 32 48 52 54 55
 $ : int [1:3] 48 49 52
 $ : int [1:5] 48 49 50 51 54
 $ : int [1:3] 48 55 75
 $ : int [1:6] 24 28 32 49 50 52
 $ : int [1:5] 32 48 50 53 75
 $ : int [1:7] 8 31 32 36 78 80 85
 $ : int [1:6] 1 2 58 64 76 85
 $ : int [1:5] 2 57 68 76 78
 $ : int [1:4] 60 61 87 88
 $ : int [1:4] 12 13 59 61
 $ : int [1:7] 12 59 60 62 63 77 87
 $ : int [1:3] 61 77 87
 $ : int [1:4] 12 61 77 83
 $ : int [1:2] 57 76
 $ : int 76
 $ : int [1:5] 9 67 68 76 84
 $ : int [1:4] 7 66 76 84
 $ : int [1:5] 9 58 66 76 78
 $ : int [1:3] 6 75 85
 $ : int [1:3] 10 72 73
 $ : int [1:3] 7 73 74
 $ : int [1:5] 10 11 16 17 70
 $ : int [1:5] 10 19 70 71 74
 $ : int [1:6] 7 19 71 73 84 86
 $ : int [1:6] 6 32 53 55 69 85
 $ : int [1:7] 57 58 64 65 66 67 68
 $ : int [1:7] 18 23 38 61 62 63 83
 $ : int [1:7] 2 8 9 56 58 68 85
 $ : int [1:7] 23 38 40 41 43 44 45
 $ : int [1:8] 8 34 35 36 41 45 47 56
 $ : int [1:6] 25 26 31 33 39 42
 $ : int [1:5] 20 21 23 35 41
 $ : int [1:9] 12 13 15 16 17 18 22 63 77
 $ : int [1:6] 7 9 66 67 74 86
 $ : int [1:11] 1 2 3 5 6 32 56 57 69 75 ...
 $ : int [1:9] 8 9 19 21 35 46 47 74 84
 $ : int [1:4] 59 61 62 88
 $ : int [1:2] 59 87
 - attr(*, "class")= chr "nb"
 - attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
 - attr(*, "call")= language poly2nb(pl = hunan, queen = TRUE)
 - attr(*, "type")= chr "queen"
 - attr(*, "sym")= logi TRUE

Be warned: The output might cut across several pages. Save the trees if you are going to print out the report.

Creating (ROOK) contiguity based neighbours

The code chunk below is used to compute Rook contiguity weight matrix.

wm_r <- poly2nb(hunan, queen=FALSE)
summary(wm_r)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 440 
Percentage nonzero weights: 5.681818 
Average number of links: 5 
Link number distribution:

 1  2  3  4  5  6  7  8  9 10 
 2  2 12 20 21 14 11  3  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links

The summary report above shows that there are 88 area units in Hunan. The most connect area unit has 10 neighbours. There are two area units with only one heighbours.

Visualising contiguity weights

A connectivity graph takes a point and displays a line to each neighboring point. We are working with polygons at the moment, so we will need to get points in order to make our connectivity graphs. The most typically method for this will be polygon centroids. We will calculate these in the sf package before moving onto the graphs. Getting Latitude and Longitude of Polygon Centroids

We will need points to associate with each polygon before we can make our connectivity graph. It will be a little more complicated than just running st_centroid on the sf object: us.bound. We need the coordinates in a separate data frame for this to work. To do this we will use a mapping function. The mapping function applies a given function to each element of a vector and returns a vector of the same length. Our input vector will be the geometry column of us.bound. Our function will be st_centroid. We will be using map_dbl variation of map from the purrr package. For more documentation, check out map documentation

To get our longitude values we map the st_centroid function over the geometry column of us.bound and access the longitude value through double bracket notation [[]] and 1. This allows us to get only the longitude, which is the first value in each centroid.

longitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])

We do the same for latitude with one key difference. We access the second value per each centroid with [[2]].

latitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])

Now that we have latitude and longitude, we use cbind to put longitude and latitude into the same object.

coords <- cbind(longitude, latitude)

We check the first few observations to see if things are formatted correctly.

head(coords)
     longitude latitude
[1,]  112.1531 29.44362
[2,]  112.0372 28.86489
[3,]  111.8917 29.47107
[4,]  111.7031 29.74499
[5,]  111.6138 29.49258
[6,]  111.0341 29.79863

Plotting Queen contiguity based neighbours map

plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")

Plotting Rook contiguity based neighbours map

plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")

Plotting both Queen and Rook contiguity based neighbours maps

par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red", main="Queen Contiguity")
plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red", main="Rook Contiguity")

Computing distance based neighbours

In this section, you will learn how to derive distance-based weight matrices by using dnearneigh() of spdep package.

The function identifies neighbours of region points by Euclidean distance with a distance band with lower d1= and upper d2= bounds controlled by the bounds= argument. If unprojected coordinates are used and either specified in the coordinates object x or with x as a two column matrix and longlat=TRUE, great circle distances in km will be calculated assuming the WGS84 reference ellipsoid.

Determine the cut-off distance

Firstly, we need to determine the upper limit for distance band by using the steps below:

  • Return a matrix with the indices of points belonging to the set of the k nearest neighbours of each other by using knearneigh() of spdep.

  • Convert the knn object returned by knearneigh() into a neighbours list of class nb with a list of integer vectors containing neighbour region number ids by using knn2nb().

  • Return the length of neighbour relationship edges by using nbdists() of spdep. The function returns in the units of the coordinates if the coordinates are projected, in km otherwise.

  • Remove the list structure of the returned object by using unlist().

#coords <- coordinates(hunan)
k1 <- knn2nb(knearneigh(coords))
k1dists <- unlist(nbdists(k1, coords, longlat = TRUE))
summary(k1dists)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  24.79   32.57   38.01   39.07   44.52   61.79 

The summary report shows that the largest first nearest neighbour distance is 61.79 km, so using this as the upper threshold gives certainty that all units will have at least one neighbour.

Computing fixed distance weight matrix

Now, we will compute the distance weight matrix by using dnearneigh() as shown in the code chunk below.

wm_d62 <- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 324 
Percentage nonzero weights: 4.183884 
Average number of links: 3.681818 

Quiz: What is the meaning of “Average number of links: 3.681818” shown above? ANS: Each of region have average 3.68 links.

Next, we will use str() to display the content of wm_d62 weight matrix.

str(wm_d62)
List of 88
 $ : int [1:5] 3 4 5 57 64
 $ : int [1:4] 57 58 78 85
 $ : int [1:4] 1 4 5 57
 $ : int [1:3] 1 3 5
 $ : int [1:4] 1 3 4 85
 $ : int 69
 $ : int [1:2] 67 84
 $ : int [1:4] 9 46 47 78
 $ : int [1:4] 8 46 68 84
 $ : int [1:4] 16 22 70 72
 $ : int [1:3] 14 17 72
 $ : int [1:5] 13 60 61 63 83
 $ : int [1:4] 12 15 60 83
 $ : int [1:2] 11 17
 $ : int 13
 $ : int [1:4] 10 17 22 83
 $ : int [1:3] 11 14 16
 $ : int [1:3] 20 22 63
 $ : int [1:5] 20 21 73 74 82
 $ : int [1:5] 18 19 21 22 82
 $ : int [1:6] 19 20 35 74 82 86
 $ : int [1:4] 10 16 18 20
 $ : int [1:3] 41 77 82
 $ : int [1:4] 25 28 31 54
 $ : int [1:4] 24 28 33 81
 $ : int [1:4] 27 33 42 81
 $ : int [1:2] 26 29
 $ : int [1:6] 24 25 33 49 52 54
 $ : int [1:2] 27 37
 $ : int 33
 $ : int [1:2] 24 36
 $ : int 50
 $ : int [1:5] 25 26 28 30 81
 $ : int [1:3] 36 45 80
 $ : int [1:6] 21 41 46 47 80 82
 $ : int [1:5] 31 34 45 56 80
 $ : int [1:2] 29 42
 $ : int [1:3] 44 77 79
 $ : int [1:4] 40 42 43 81
 $ : int [1:3] 39 45 79
 $ : int [1:5] 23 35 45 79 82
 $ : int [1:5] 26 37 39 43 81
 $ : int [1:3] 39 42 44
 $ : int [1:2] 38 43
 $ : int [1:6] 34 36 40 41 79 80
 $ : int [1:5] 8 9 35 47 86
 $ : int [1:5] 8 35 46 80 86
 $ : int [1:5] 50 51 52 53 55
 $ : int [1:4] 28 51 52 54
 $ : int [1:6] 32 48 51 52 54 55
 $ : int [1:4] 48 49 50 52
 $ : int [1:6] 28 48 49 50 51 54
 $ : int [1:2] 48 55
 $ : int [1:5] 24 28 49 50 52
 $ : int [1:4] 48 50 53 75
 $ : int 36
 $ : int [1:5] 1 2 3 58 64
 $ : int [1:5] 2 57 64 66 68
 $ : int [1:3] 60 87 88
 $ : int [1:4] 12 13 59 61
 $ : int [1:5] 12 60 62 63 87
 $ : int [1:4] 61 63 77 87
 $ : int [1:5] 12 18 61 62 83
 $ : int [1:4] 1 57 58 76
 $ : int 76
 $ : int [1:5] 58 67 68 76 84
 $ : int [1:2] 7 66
 $ : int [1:4] 9 58 66 84
 $ : int [1:2] 6 75
 $ : int [1:3] 10 72 73
 $ : int [1:2] 73 74
 $ : int [1:3] 10 11 70
 $ : int [1:4] 19 70 71 74
 $ : int [1:5] 19 21 71 73 86
 $ : int [1:2] 55 69
 $ : int [1:3] 64 65 66
 $ : int [1:3] 23 38 62
 $ : int [1:2] 2 8
 $ : int [1:4] 38 40 41 45
 $ : int [1:5] 34 35 36 45 47
 $ : int [1:5] 25 26 33 39 42
 $ : int [1:6] 19 20 21 23 35 41
 $ : int [1:4] 12 13 16 63
 $ : int [1:4] 7 9 66 68
 $ : int [1:2] 2 5
 $ : int [1:4] 21 46 47 74
 $ : int [1:4] 59 61 62 88
 $ : int [1:2] 59 87
 - attr(*, "class")= chr "nb"
 - attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
 - attr(*, "call")= language dnearneigh(x = coords, d1 = 0, d2 = 62, longlat = TRUE)
 - attr(*, "dnn")= num [1:2] 0 62
 - attr(*, "bounds")= chr [1:2] "GE" "LE"
 - attr(*, "nbtype")= chr "distance"
 - attr(*, "sym")= logi TRUE

Another way to display the structure of the weight matrix is to combine table() and card() of spdep.

table(hunan$County, card(wm_d62))
               
                1 2 3 4 5 6
  Anhua         1 0 0 0 0 0
  Anren         0 0 0 1 0 0
  Anxiang       0 0 0 0 1 0
  Baojing       0 0 0 0 1 0
  Chaling       0 0 1 0 0 0
  Changning     0 0 1 0 0 0
  Changsha      0 0 0 1 0 0
  Chengbu       0 1 0 0 0 0
  Chenxi        0 0 0 1 0 0
  Cili          0 1 0 0 0 0
  Dao           0 0 0 1 0 0
  Dongan        0 0 1 0 0 0
  Dongkou       0 0 0 1 0 0
  Fenghuang     0 0 0 1 0 0
  Guidong       0 0 1 0 0 0
  Guiyang       0 0 0 1 0 0
  Guzhang       0 0 0 0 0 1
  Hanshou       0 0 0 1 0 0
  Hengdong      0 0 0 0 1 0
  Hengnan       0 0 0 0 1 0
  Hengshan      0 0 0 0 0 1
  Hengyang      0 0 0 0 0 1
  Hongjiang     0 0 0 0 1 0
  Huarong       0 0 0 1 0 0
  Huayuan       0 0 0 1 0 0
  Huitong       0 0 0 1 0 0
  Jiahe         0 0 0 0 1 0
  Jianghua      0 0 1 0 0 0
  Jiangyong     0 1 0 0 0 0
  Jingzhou      0 1 0 0 0 0
  Jinshi        0 0 0 1 0 0
  Jishou        0 0 0 0 0 1
  Lanshan       0 0 0 1 0 0
  Leiyang       0 0 0 1 0 0
  Lengshuijiang 0 0 1 0 0 0
  Li            0 0 1 0 0 0
  Lianyuan      0 0 0 0 1 0
  Liling        0 1 0 0 0 0
  Linli         0 0 0 1 0 0
  Linwu         0 0 0 1 0 0
  Linxiang      1 0 0 0 0 0
  Liuyang       0 1 0 0 0 0
  Longhui       0 0 1 0 0 0
  Longshan      0 1 0 0 0 0
  Luxi          0 0 0 0 1 0
  Mayang        0 0 0 0 0 1
  Miluo         0 0 0 0 1 0
  Nan           0 0 0 0 1 0
  Ningxiang     0 0 0 1 0 0
  Ningyuan      0 0 0 0 1 0
  Pingjiang     0 1 0 0 0 0
  Qidong        0 0 1 0 0 0
  Qiyang        0 0 1 0 0 0
  Rucheng       0 1 0 0 0 0
  Sangzhi       0 1 0 0 0 0
  Shaodong      0 0 0 0 1 0
  Shaoshan      0 0 0 0 1 0
  Shaoyang      0 0 0 1 0 0
  Shimen        1 0 0 0 0 0
  Shuangfeng    0 0 0 0 0 1
  Shuangpai     0 0 0 1 0 0
  Suining       0 0 0 0 1 0
  Taojiang      0 1 0 0 0 0
  Taoyuan       0 1 0 0 0 0
  Tongdao       0 1 0 0 0 0
  Wangcheng     0 0 0 1 0 0
  Wugang        0 0 1 0 0 0
  Xiangtan      0 0 0 1 0 0
  Xiangxiang    0 0 0 0 1 0
  Xiangyin      0 0 0 1 0 0
  Xinhua        0 0 0 0 1 0
  Xinhuang      1 0 0 0 0 0
  Xinning       0 1 0 0 0 0
  Xinshao       0 0 0 0 0 1
  Xintian       0 0 0 0 1 0
  Xupu          0 1 0 0 0 0
  Yanling       0 0 1 0 0 0
  Yizhang       1 0 0 0 0 0
  Yongshun      0 0 0 1 0 0
  Yongxing      0 0 0 1 0 0
  You           0 0 0 1 0 0
  Yuanjiang     0 0 0 0 1 0
  Yuanling      1 0 0 0 0 0
  Yueyang       0 0 1 0 0 0
  Zhijiang      0 0 0 0 1 0
  Zhongfang     0 0 0 1 0 0
  Zhuzhou       0 0 0 0 1 0
  Zixing        0 0 1 0 0 0
n_comp <- n.comp.nb(wm_d62)
n_comp$nc
[1] 1
table(n_comp$comp.id)

 1 
88 

Plotting fixed distance weight matrix

Next, we will plot the distance weight matrix by using the code chunk below.

plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)

The red lines show the links of 1st nearest neighbours and the black lines show the links of neighbours within the cut-off distance of 62km.

Alternatively, we can plot both of them next to each other by using the code chunk below.

par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey")
plot(k1, coords, add=TRUE, col="red", length=0.08, main="1st nearest neighbours")
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE, pch = 19, cex = 0.6, main="Distance link")

Computing adaptive distance weight matrix

One of the characteristics of fixed distance weight matrix is that more densely settled areas (usually the urban areas) tend to have more neighbours and the less densely settled areas (usually the rural counties) tend to have lesser neighbours. Having many neighbours smoothes the neighbour relationship across more neighbours.

It is possible to control the numbers of neighbours directly using k-nearest neighbours, either accepting asymmetric neighbours or imposing symmetry as shown in the code chunk below

knn6 <- knn2nb(knearneigh(coords, k=6))
knn6
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 528 
Percentage nonzero weights: 6.818182 
Average number of links: 6 
Non-symmetric neighbours list

Similarly, we can display the content of the matrix by using str().

str(knn6)
List of 88
 $ : int [1:6] 2 3 4 5 57 64
 $ : int [1:6] 1 3 57 58 78 85
 $ : int [1:6] 1 2 4 5 57 85
 $ : int [1:6] 1 3 5 6 69 85
 $ : int [1:6] 1 3 4 6 69 85
 $ : int [1:6] 3 4 5 69 75 85
 $ : int [1:6] 9 66 67 71 74 84
 $ : int [1:6] 9 46 47 78 80 86
 $ : int [1:6] 8 46 66 68 84 86
 $ : int [1:6] 16 19 22 70 72 73
 $ : int [1:6] 10 14 16 17 70 72
 $ : int [1:6] 13 15 60 61 63 83
 $ : int [1:6] 12 15 60 61 63 83
 $ : int [1:6] 11 15 16 17 72 83
 $ : int [1:6] 12 13 14 17 60 83
 $ : int [1:6] 10 11 17 22 72 83
 $ : int [1:6] 10 11 14 16 72 83
 $ : int [1:6] 20 22 23 63 77 83
 $ : int [1:6] 10 20 21 73 74 82
 $ : int [1:6] 18 19 21 22 23 82
 $ : int [1:6] 19 20 35 74 82 86
 $ : int [1:6] 10 16 18 19 20 83
 $ : int [1:6] 18 20 41 77 79 82
 $ : int [1:6] 25 28 31 52 54 81
 $ : int [1:6] 24 28 31 33 54 81
 $ : int [1:6] 25 27 29 33 42 81
 $ : int [1:6] 26 29 30 37 42 81
 $ : int [1:6] 24 25 33 49 52 54
 $ : int [1:6] 26 27 37 42 43 81
 $ : int [1:6] 26 27 28 33 49 81
 $ : int [1:6] 24 25 36 39 40 54
 $ : int [1:6] 24 31 50 54 55 56
 $ : int [1:6] 25 26 28 30 49 81
 $ : int [1:6] 36 40 41 45 56 80
 $ : int [1:6] 21 41 46 47 80 82
 $ : int [1:6] 31 34 40 45 56 80
 $ : int [1:6] 26 27 29 42 43 44
 $ : int [1:6] 23 43 44 62 77 79
 $ : int [1:6] 25 40 42 43 44 81
 $ : int [1:6] 31 36 39 43 45 79
 $ : int [1:6] 23 35 45 79 80 82
 $ : int [1:6] 26 27 37 39 43 81
 $ : int [1:6] 37 39 40 42 44 79
 $ : int [1:6] 37 38 39 42 43 79
 $ : int [1:6] 34 36 40 41 79 80
 $ : int [1:6] 8 9 35 47 78 86
 $ : int [1:6] 8 21 35 46 80 86
 $ : int [1:6] 49 50 51 52 53 55
 $ : int [1:6] 28 33 48 51 52 54
 $ : int [1:6] 32 48 51 52 54 55
 $ : int [1:6] 28 48 49 50 52 54
 $ : int [1:6] 28 48 49 50 51 54
 $ : int [1:6] 48 50 51 52 55 75
 $ : int [1:6] 24 28 49 50 51 52
 $ : int [1:6] 32 48 50 52 53 75
 $ : int [1:6] 32 34 36 78 80 85
 $ : int [1:6] 1 2 3 58 64 68
 $ : int [1:6] 2 57 64 66 68 78
 $ : int [1:6] 12 13 60 61 87 88
 $ : int [1:6] 12 13 59 61 63 87
 $ : int [1:6] 12 13 60 62 63 87
 $ : int [1:6] 12 38 61 63 77 87
 $ : int [1:6] 12 18 60 61 62 83
 $ : int [1:6] 1 3 57 58 68 76
 $ : int [1:6] 58 64 66 67 68 76
 $ : int [1:6] 9 58 67 68 76 84
 $ : int [1:6] 7 65 66 68 76 84
 $ : int [1:6] 9 57 58 66 78 84
 $ : int [1:6] 4 5 6 32 75 85
 $ : int [1:6] 10 16 19 22 72 73
 $ : int [1:6] 7 19 73 74 84 86
 $ : int [1:6] 10 11 14 16 17 70
 $ : int [1:6] 10 19 21 70 71 74
 $ : int [1:6] 19 21 71 73 84 86
 $ : int [1:6] 6 32 50 53 55 69
 $ : int [1:6] 58 64 65 66 67 68
 $ : int [1:6] 18 23 38 61 62 63
 $ : int [1:6] 2 8 9 46 58 68
 $ : int [1:6] 38 40 41 43 44 45
 $ : int [1:6] 34 35 36 41 45 47
 $ : int [1:6] 25 26 28 33 39 42
 $ : int [1:6] 19 20 21 23 35 41
 $ : int [1:6] 12 13 15 16 22 63
 $ : int [1:6] 7 9 66 68 71 74
 $ : int [1:6] 2 3 4 5 56 69
 $ : int [1:6] 8 9 21 46 47 74
 $ : int [1:6] 59 60 61 62 63 88
 $ : int [1:6] 59 60 61 62 63 87
 - attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
 - attr(*, "call")= language knearneigh(x = coords, k = 6)
 - attr(*, "sym")= logi FALSE
 - attr(*, "type")= chr "knn"
 - attr(*, "knn-k")= num 6
 - attr(*, "class")= chr "nb"

Notice that each county has six neighbours, no less no more!

Plotting distance based neighbours

We can plot the weight matrix using the code chunk below.

plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")

Weights based on IDW

In this section, you will learn how to derive a spatial weight matrix based on Inversed Distance method.

First, we will compute the distances between areas by using nbdists() of spdep.

dist <- nbdists(wm_q, coords, longlat = TRUE)
ids <- lapply(dist, function(x) 1/(x))
ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113

[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350

[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765

[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065

[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354

[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297

[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915

[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314

[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980

[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046

[[11]]
[1] 0.01882869 0.02243492 0.02247473

[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429

[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243

[[14]]
[1] 0.01882869 0.01233868 0.02098555

[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226

[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430

[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996

[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380

[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874

[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034

[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800

[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296

[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605

[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180

[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957

[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532

[[27]]
[1] 0.02155798 0.02490625 0.01562326

[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506

[[29]]
[1] 0.02490625 0.01686587 0.01395022

[[30]]
[1] 0.02090587

[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130

[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655

[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045

[[34]]
[1] 0.03113041 0.03589551 0.02882915

[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020

[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129

[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676

[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415

[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385

[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207

[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892

[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518

[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782

[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508

[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700

[[46]]
[1] 0.03453056 0.04033752 0.02689769

[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458

[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085

[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000

[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179

[[51]]
[1] 0.03370576 0.02138091 0.02873854

[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672

[[53]]
[1] 0.01630057 0.01979945 0.01253977

[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672

[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298

[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697

[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702

[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192

[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036

[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040

[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452

[[62]]
[1] 0.02514093 0.02002219 0.02110260

[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987

[[64]]
[1] 0.02911413 0.01689892

[[65]]
[1] 0.02471705

[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569

[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172

[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511

[[69]]
[1] 0.02174813 0.01645838 0.01419926

[[70]]
[1] 0.02631658 0.01963168 0.02278487

[[71]]
[1] 0.01473997 0.01838483 0.03197403

[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168

[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709

[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567

[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581

[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357

[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896

[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779

[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101

[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855

[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518

[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892

[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896

[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994

[[85]]
 [1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
 [7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794

[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994

[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034

[[88]]
[1] 0.01785036 0.02058034

Row-standardised weights matrix

Next, we need to assign weights to each neighboring polygon. In our case, each neighboring polygon will be assigned equal weight (style=“W”). This is accomplished by assigning the fraction 1/(#ofneighbors) to each neighboring county then summing the weighted income values. While this is the most intuitive way to summaries the neighbors’ values it has one drawback in that polygons along the edges of the study area will base their lagged values on fewer polygons thus potentially over- or under-estimating the true nature of the spatial autocorrelation in the data. For this example, we’ll stick with the style=“W” option for simplicity’s sake but note that other more robust options are available, notably style=“B”.

rswm_q <- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147

The zero.policy=TRUE option allows for lists of non-neighbors. This should be used with caution since the user may not be aware of missing neighbors in their dataset however, a zero.policy of FALSE would return an error.

To see the weight of the first polygon’s four neighbors type:

rswm_q$weights[10]
[[1]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Each neighbor is assigned a 0.2 of the total weight. This means that when R computes the average neighboring income values, each neighbor’s income will be multiplied by 0.2 before being tallied.

Using the same method, we can also derive a row standardised distance weight matrix by using the code chunk below.

rswm_ids <- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn       S0        S1     S2
B 88 7744 8.786867 0.3776535 3.8137

Characteristics of weights list object: Neighbour list object: Number of regions: 88 Number of nonzero links: 448 Percentage nonzero weights: 5.785124 Average number of links: 5.090909

Weights style: B Weights constants summary: n nn S0 S1 S2 B 88 7744 8.786867 0.3776535 3.8137

rswm_ids$weights[1]
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
summary(unlist(rswm_ids$weights))
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338 

Application of Spatial Weight Matrix

In this section, you will learn how to create four different spatial lagged variables, they are:

  • spatial lag with row-standardized weights,

  • spatial lag as a sum of neighbouring values,

  • spatial window average, and spatial window sum.

Spatial lag with row-standardized weights

Finally, we’ll compute the average neighbor GDPPC value for each polygon. These values are often referred to as spatially lagged values.

GDPPC.lag <- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag
 [1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
 [9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00

Recalled in the previous section, we retrieved the GDPPC of these five countries by using the code chunk below.

nb1 <- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1
[1] 20981 34592 24473 21311 22879

Question: Can you see the meaning of Spatial lag with row-standardized weights now? We can append the spatially lag GDPPC values onto hunan sf data frame by using the code chunk below.

lag.list <- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.res <- as.data.frame(lag.list)
colnames(lag.res) <- c("NAME_3", "lag GDPPC")
hunan <- left_join(hunan,lag.res)
Joining, by = "NAME_3"

The following table shows the average neighboring income values (stored in the Inc.lag object) for each county.

head(hunan)
Simple feature collection with 6 features and 36 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS:  WGS 84
   NAME_2  ID_3  NAME_3   ENGTYPE_3 Shape_Leng Shape_Area  County    City
1 Changde 21098 Anxiang      County   1.869074 0.10056190 Anxiang Changde
2 Changde 21100 Hanshou      County   2.360691 0.19978745 Hanshou Changde
3 Changde 21101  Jinshi County City   1.425620 0.05302413  Jinshi Changde
4 Changde 21102      Li      County   3.474325 0.18908121      Li Changde
5 Changde 21103   Linli      County   2.289506 0.11450357   Linli Changde
6 Changde 21104  Shimen      County   4.171918 0.37194707  Shimen Changde
  avg_wage deposite     FAI Gov_Rev Gov_Exp     GDP GDPPC     GIO   Loan  NIPCR
1    31935   5517.2  3541.0  243.64  1779.5 12482.0 23667  5108.9 2806.9 7693.7
2    32265   7979.0  8665.0  386.13  2062.4 15788.0 20981 13491.0 4550.0 8269.9
3    28692   4581.7  4777.0  373.31  1148.4  8706.9 34592 10935.0 2242.0 8169.9
4    32541  13487.0 16066.0  709.61  2459.5 20322.0 24473 18402.0 6748.0 8377.0
5    32667    564.1  7781.2  336.86  1538.7 10355.0 25554  8214.0  358.0 8143.1
6    33261   8334.4 10531.0  548.33  2178.8 16293.0 27137 17795.0 6026.5 6156.0
   Bed    Emp  EmpR EmpRT Pri_Stu Sec_Stu Household Household_R NOIP Pop_R
1 1931 336.39 270.5 205.9  19.584  17.819     148.1       135.4   53 346.0
2 2560 456.78 388.8 246.7  42.097  33.029     240.2       208.7   95 553.2
3  848 122.78  82.1  61.7   8.723   7.592      81.9        43.7   77  92.4
4 2038 513.44 426.8 227.1  38.975  33.938     268.5       256.0   96 539.7
5 1440 307.36 272.2 100.8  23.286  18.943     129.1       157.2   99 246.6
6 2502 392.05 329.6 193.8  29.245  26.104     190.6       184.7  122 399.2
    RSCG Pop_T    Agri Service Disp_Inc      RORP    ROREmp lag GDPPC
1 3957.9 528.3 4524.41   14100    16610 0.6549309 0.8041262  24847.20
2 4460.5 804.6 6545.35   17727    18925 0.6875466 0.8511756  22724.80
3 3683.0 251.8 2562.46    7525    19498 0.3669579 0.6686757  24143.25
4 7110.2 832.5 7562.34   53160    18985 0.6482883 0.8312558  27737.50
5 3604.9 409.3 3583.91    7031    18604 0.6024921 0.8856065  27270.25
6 6490.7 600.5 5266.51    6981    19275 0.6647794 0.8407091  21248.80
                        geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...

Next, we will plot both the GDPPC and spatial lag GDPPC for comparison using the code chunk below.

gdppc <- qtm(hunan, "GDPPC")
lag_gdppc <- qtm(hunan, "lag GDPPC")
tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)

Spatial lag as a sum of neighboring values

We can calculate spatial lag as a sum of neighboring values by assigning binary weights. This requires us to go back to our neighbors list, then apply a function that will assign binary weights, then we use glist = in the nb2listw function to explicitly assign these weights.

We start by applying a function that will assign a value of 1 per each neighbor. This is done with lapply, which we have been using to manipulate the neighbors structure throughout the past notebooks. Basically it applies a function across each value in the neighbors structure.

b_weights <- lapply(wm_q, function(x) 0*x + 1)
b_weights2 <- nb2listw(wm_q, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0  S1    S2
B 88 7744 448 896 10224

With the proper weights assigned, we can use lag.listw to compute a lag variable from our weight and GDPPC.

lag_sum <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag.res <- as.data.frame(lag_sum)
colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")

First, let us examine the result by using the code chunk below.

lag_sum
[[1]]
 [1] "Anxiang"       "Hanshou"       "Jinshi"        "Li"           
 [5] "Linli"         "Shimen"        "Liuyang"       "Ningxiang"    
 [9] "Wangcheng"     "Anren"         "Guidong"       "Jiahe"        
[13] "Linwu"         "Rucheng"       "Yizhang"       "Yongxing"     
[17] "Zixing"        "Changning"     "Hengdong"      "Hengnan"      
[21] "Hengshan"      "Leiyang"       "Qidong"        "Chenxi"       
[25] "Zhongfang"     "Huitong"       "Jingzhou"      "Mayang"       
[29] "Tongdao"       "Xinhuang"      "Xupu"          "Yuanling"     
[33] "Zhijiang"      "Lengshuijiang" "Shuangfeng"    "Xinhua"       
[37] "Chengbu"       "Dongan"        "Dongkou"       "Longhui"      
[41] "Shaodong"      "Suining"       "Wugang"        "Xinning"      
[45] "Xinshao"       "Shaoshan"      "Xiangxiang"    "Baojing"      
[49] "Fenghuang"     "Guzhang"       "Huayuan"       "Jishou"       
[53] "Longshan"      "Luxi"          "Yongshun"      "Anhua"        
[57] "Nan"           "Yuanjiang"     "Jianghua"      "Lanshan"      
[61] "Ningyuan"      "Shuangpai"     "Xintian"       "Huarong"      
[65] "Linxiang"      "Miluo"         "Pingjiang"     "Xiangyin"     
[69] "Cili"          "Chaling"       "Liling"        "Yanling"      
[73] "You"           "Zhuzhou"       "Sangzhi"       "Yueyang"      
[77] "Qiyang"        "Taojiang"      "Shaoyang"      "Lianyuan"     
[81] "Hongjiang"     "Hengyang"      "Guiyang"       "Changsha"     
[85] "Taoyuan"       "Xiangtan"      "Dao"           "Jiangyong"    

[[2]]
 [1] 124236 113624  96573 110950 109081 106244 174988 235079 273907 256221
[11]  98013 104050 102846  92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119  82884  74668  43184  99244  46549  20518
[31] 140576 121601  92069  43258 144567 132119  51694  59024  69349  73780
[41]  94651 100680  69398  52798 140472 118623 180933  82798  83090  97356
[51]  59482  77334  38777 111463  74715 174391 150558 122144  68012  84575
[61] 143045  51394  98279  47671  26360 236917 220631 185290  64640  70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456  67608  33860

Next, we will append the lag_sum GDPPC field into hunan sf data frame by using the code chunk below.

hunan <- left_join(hunan, lag.res)
Joining, by = "NAME_3"

Now, We can plot both the GDPPC and Spatial Lag Sum GDPPC for comparison using the code chunk below.

gdppc <- qtm(hunan, "GDPPC")
lag_sum_gdppc <- qtm(hunan, "lag_sum GDPPC")
tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)

Spatial window average

The spatial window average uses row-standardized weights and includes the diagonal element. To do this in R, we need to go back to the neighbors structure and add the diagonal element before assigning weights. To begin we assign k6 to a new variable because we will directly alter its structure to add the diagonal elements.

wm_q1 <- wm_q

To add the diagonal element to the neighbour list, we just need to use include.self() from spdep.

include.self(wm_q1)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Now we obtain weights with nb2listw()

wm_q1 <- nb2listw(wm_q1)
wm_q1
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147

Lastly, we just need to create the lag variable from our weight structure and GDPPC variable.

lag_w_avg_gpdpc <- lag.listw(wm_q1, 
                             hunan$GDPPC)
lag_w_avg_gpdpc
 [1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
 [9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00

Next, we will convert the lag variable listw object into a data.frame by using as.data.frame().

lag.list.wm_q1 <- list(hunan$NAME_3, lag.listw(wm_q1, hunan$GDPPC))
lag_wm_q1.res <- as.data.frame(lag.list.wm_q1)
colnames(lag_wm_q1.res) <- c("NAME_3", "lag_window_avg GDPPC")

Note: The third command line on the code chunk above renames the field names of lag_wm_q1.res object into NAME_3 and lag_window_avg GDPPC respectively.

Next, the code chunk below will be used to append lag_window_avg GDPPC values onto hunan sf data.frame by using left_join() of dplyr package.

hunan <- left_join(hunan, lag_wm_q1.res)
Joining, by = "NAME_3"

Lastly, qtm() of tmap package is used to plot the GDPPC and lag_window_avg GDPPC map next to each other for quick comparison.

gdppc <- qtm(hunan, "GDPPC")
w_avg_gdppc <- qtm(hunan, "lag_window_avg GDPPC")
tmap_arrange(gdppc, w_avg_gdppc, asp=1, ncol=2)

Note: For more effective comparison, it is advicible to use the core tmap mapping functions.

Spatial window sum

The spatial window sum is the counter part of the window average, but without using row-standardized weights. To do this we assign binary weights to the neighbor structure that includes the diagonal element.

wm_q1 <- wm_q

To add the diagonal element to the neighbour list, we just need to use include.self() from spdep.

include.self(wm_q1)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 
wm_q1
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Next, we will assign binary weights to the neighbour structure that includes the diagonal element.

b_weights <- lapply(wm_q1, function(x) 0*x + 1)
b_weights[1]
[[1]]
[1] 1 1 1 1 1

Again, we use nb2listw() and glist() to explicitly assign weight values.

b_weights2 <- nb2listw(wm_q1, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0  S1    S2
B 88 7744 448 896 10224

With our new weight structure, we can compute the lag variable with lag.listw().

w_sum_gdppc <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc
[[1]]
 [1] "Anxiang"       "Hanshou"       "Jinshi"        "Li"           
 [5] "Linli"         "Shimen"        "Liuyang"       "Ningxiang"    
 [9] "Wangcheng"     "Anren"         "Guidong"       "Jiahe"        
[13] "Linwu"         "Rucheng"       "Yizhang"       "Yongxing"     
[17] "Zixing"        "Changning"     "Hengdong"      "Hengnan"      
[21] "Hengshan"      "Leiyang"       "Qidong"        "Chenxi"       
[25] "Zhongfang"     "Huitong"       "Jingzhou"      "Mayang"       
[29] "Tongdao"       "Xinhuang"      "Xupu"          "Yuanling"     
[33] "Zhijiang"      "Lengshuijiang" "Shuangfeng"    "Xinhua"       
[37] "Chengbu"       "Dongan"        "Dongkou"       "Longhui"      
[41] "Shaodong"      "Suining"       "Wugang"        "Xinning"      
[45] "Xinshao"       "Shaoshan"      "Xiangxiang"    "Baojing"      
[49] "Fenghuang"     "Guzhang"       "Huayuan"       "Jishou"       
[53] "Longshan"      "Luxi"          "Yongshun"      "Anhua"        
[57] "Nan"           "Yuanjiang"     "Jianghua"      "Lanshan"      
[61] "Ningyuan"      "Shuangpai"     "Xintian"       "Huarong"      
[65] "Linxiang"      "Miluo"         "Pingjiang"     "Xiangyin"     
[69] "Cili"          "Chaling"       "Liling"        "Yanling"      
[73] "You"           "Zhuzhou"       "Sangzhi"       "Yueyang"      
[77] "Qiyang"        "Taojiang"      "Shaoyang"      "Lianyuan"     
[81] "Hongjiang"     "Hengyang"      "Guiyang"       "Changsha"     
[85] "Taoyuan"       "Xiangtan"      "Dao"           "Jiangyong"    

[[2]]
 [1] 124236 113624  96573 110950 109081 106244 174988 235079 273907 256221
[11]  98013 104050 102846  92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119  82884  74668  43184  99244  46549  20518
[31] 140576 121601  92069  43258 144567 132119  51694  59024  69349  73780
[41]  94651 100680  69398  52798 140472 118623 180933  82798  83090  97356
[51]  59482  77334  38777 111463  74715 174391 150558 122144  68012  84575
[61] 143045  51394  98279  47671  26360 236917 220631 185290  64640  70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456  67608  33860

Next, we will convert the lag variable listw object into a data.frame by using as.data.frame().

w_sum_gdppc.res <- as.data.frame(w_sum_gdppc)
colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")

Note: The second command line on the code chunk above renames the field names of w_sum_gdppc.res object into NAME_3 and w_sum GDPPC respectively.

Next, the code chunk below will be used to append w_sum GDPPC values onto hunan sf data.frame by using left_join() of dplyr package.

hunan <- left_join(hunan, w_sum_gdppc.res)
Joining, by = "NAME_3"

Lastly, qtm() of tmap package is used to plot the GDPPC and lag_sum GDPPC map next to each other for quick comparison.

gdppc <- qtm(hunan, "GDPPC")
w_sum_gdppc <- qtm(hunan, "w_sum GDPPC")
tmap_arrange(gdppc, w_sum_gdppc, asp=1, ncol=2)

Note: For more effective comparison, it is advicible to use the core tmap mapping functions.